26 research outputs found

    Ubiquitous Filtering for Nonlinear Problems

    Get PDF
    This chapter develops and extends the general theoretical results, previously published in the chapter “Nonlinear filtering of weak chaotic signals”, and presents detailed implementations of a computationally simple, robust (filtering fidelity almost insensitive to changes of the desired input signal properties) and rather precise approach for the filtering of weak signals of different physical nature (biological, seismic, voice, etc.) in presence of white Gaussian noise. The implementations rely on non-linear filtering techniques that in general can be considered as either one-moment or multi-moment, in the sense that they operate with a single sample (instantaneous fashion) or with various adjacent samples (non-instantaneous fashion). Chaotic modeling of the real input signals allows achieving an almost ubiquitous filtering approach with a computationally simple implementation. Application of the linearization strategies (for both one and two-moment filtering) provide, additionally, “invariance” of the processing algorithms to variations on the nature and statistics of the input signals

    Nonlinear Filtering of Weak Chaotic Signals

    Get PDF
    In recent years, the application of nonlinear filtering for processing chaotic signals has become relevant. A common factor in all nonlinear filtering algorithms is that they operate in an instantaneous fashion, that is, at each cycle, a one moment of time magnitude of the signal of interest is processed. This operation regime yields good performance metrics, in terms of mean squared error (MSE) when the signal-to-noise ratio (SNR) is greater than one and shows moderate degradation for SNR values no smaller than −3 dB. Many practical applications require detection for smaller SNR values (weak signals). This chapter presents the theoretical tools and developments that allow nonlinear filtering of weak chaotic signals, avoiding the degradation of the MSE when the SNR is rather small. The innovation introduced through this approach is that the nonlinear filtering becomes multimoment, that is, the influence of more than one moment of time magnitudes is involved in the processing. Some other approaches are also presented

    Algoritmos de aproximación para filtrado no lineal de caos

    Get PDF
    The paper is dedicated to the description of two approximate methods of non-linear filtering algorithms for signals of Lorenz, Chua and Rössler attractors to provide real time filtering solutions for scenarios with low Signal Noise Ratios (SNR). For those cases the method of the Global (In-tegral) Approximation of the a-posteriori Probability Density Function(PDF) is considered. Some asymptotical solutions are presented as well.Este documento está dedicado a la descripción de dos métodos de aproximación de algoritmos de filtrado no lineales para señales de Lorentz y atractores Chua y Rössler, ofreciendo soluciones de filtrado en tiempo real para escenarios con bajas tasas de señal de ruido (RSR). Para esos casos, se considera el método de la Aproximación Global (Integral) de la a posteriori función de densidad de probabilidad (FDP). También se presentan algunas soluciones asintóticas

    Robust filtering of weak signals from real phenomena

    Get PDF
    En un gran número de escenarios de la vida real se requiere procesar señales de interés que se encuentran muy inmersas en medio de ruido de fondo: señales tectónicas de las entrañas de la Tierra, otras provenientes del lejano cosmos, de telemetría biomédica, acústicas lejanas, interfaces neuronales no invasivas, etc. El propósito de este trabajo es presentar la descripción de una plataforma robusta y eficiente para hacer filtraje en tiempo real de señales muy inmersas en ruido (bastante débiles) y de naturaleza muy diferente. La estrategia propuesta se basa en dos principios: el modelado de las señales de los fenómenos físicos mediante procesos caóticos y la aplicación de estrategias de filtraje basadas en la teoría de sistemas dinámicos no lineales. Tomando como caso de estudio señales sísmicas, señales de electrocardiogramas fetales, señales de tipo voz y señales de interferencias de radiofrecuencia, este trabajo experimental muestra que la metodología es eficiente (error cuadrático medio menor al 1 %) y robusta (la estructura de filtraje, basada en filtro de Kalman, es invariante ante diferentes señales fenomenológicas). La metodología presentada resulta ser muy atractiva para aplicaciones prácticas para la detección de señales débiles en tiempo real por su alta precisión de filtraje con una mínima complejidad computacional y tiempos de procesamiento muy cortos.In a large number of real-life scenarios it is required to process desired signals that are significantly immersed into background noise: tectonic signals from the entrails of the earth, signals coming from the far away cosmos, biometric telemetry signals, distant acoustic signals, noninvasive neural interfaces and so on. The purpose of this paper is to present the description of a robust and efficient platform for the real time filtering of signals deeply immersed in noise (rather weak signals) with rather different nature. The proposed strategy is based on two principles: the chaotic modelling of the signals describing the physical phenomena and the application of filtering strategies based on the theory of non-linear dynamical systems. Considering as a study case seismic signals, fetal electrocardiogram signals, voice-like signals and radio frequency interference signals, this experimental work shows that the proposed methodology is efficient (with mean squared error values less than 1%) and robust (the filtering structure remains the same although the phenomenological signals are drastically different). It turns out that the presented methodology is very attractive for the real time detection of weak signals in practical applications because it offers a high filtering precision with a minimum computational complexity and short processing times

    On geometry-base statistical channel models for MIMO wireles communications

    Get PDF
    El uso de sistemas de comunicación de banda ancha de múltiple entradamúltiple salida (Multiple Input Multiple Output MIMO) es actualmente objeto de un interés considerable. Una razón para esto es el reciente desarrollo de sistemas de comunicación móvil de tercera generación (3G) y superiores, tales como la tecnología de banda ancha Wideband Code Division Multiple Access (WCDMA, por sus siglas en inglés), la cual proporciona canales de radio de 5 MHz de ancho de banda. Para el diseño y la simulación de estos sistemas de radio móviles que usan propagación inalámbrica MIMO (como Wideband-CDMA por ejemplo), necesitamos modelos de canal que provean la requerida información espacial y temporal necesaria para el estudio de tales sistemas, esto es, los parámetros básicos de modelado en los dominios del espacio y el tiempo. Como ejemplo podemos mencionar, el valor cuadrático medio de la dispersión del retardo (Delay spread DS) el cual está directamente relacionado a la capacidad de un sistema de comunicación específico y nos da una idea aproximada de la complejidad del receptor. En esta tesis, se propone un modelo basado en geometría con enfoque en grupos (clusters) y es utilizado para el análisis en los dominios del espacio y el tiempo para condiciones estacionarias, y para representar los perfiles de potencia-angulo-retardo (Power Delay Angle Profiles PDAPs) de los componentes multi-trayectoria en ambientes urbanos. Además, se han derivado soluciones en formas cerradas para las expresiones en el dominio del ángulo (espacial) y del tiempo. La investigación previa sobre el modelado de canales cubre una amplia variedad de aspectos en varios niveles de detalle, incluyendo análisis para condiciones no estacionarias. Sin embargo el trabajo presentado en la literatura no incluye las relaciones entre los grupos (cluster) físicos y los PDAPs. El modelo propuesto basado en grupos (clusters) puede ser usado para mejorar aún más el desempeño en condiciones estacionarias de los sistemas de comunicaciones móviles actuales y futuros tales como los sistemas de comunicación MIMO de banda ancha. En la tesis también se presenta un análisis en el dominio del ángulo (espacial) y del tiempo respectivamente, a través de las funciones densidad de probabilidad (PDF) de la dirección de llegada (Direction of Arrival DOA) y el tiempo de llegada (Time of Arrival TOA) para el modelo basado en grupos. A fin de evaluar las funciones de probabilidad teóricas derivadas, éstas han sido comparadas con resultados experimentales publicados en la literatura. La comparación con estos resultados experimentales muestran una buena concordancia, no obstante la técnica de modelado presentada en esta tesis se encuentra limitada a condiciones estacionarias del canal. La condición de no estacionariedad se ubica más allá del alcance de esta tesis, es decir, el modelo propuesto no incorpora el efecto Doppler en los análisis

    NOMA Transmission Systems: Overview of SIC Design and New Findings

    Get PDF
    Non-Orthogonal Multiple Access (NOMA) has been recently proposed as a good alternative to meet 5G and beyond requirements in terms of high spectral efficiency, massive connectivity, and low latency. It has been demonstrated that the use of NOMA in downlink has superior performance in terms of throughput, whereas the use in uplink outperforms OMA techniques in terms of fairness. A distinctive feature of NOMA is the presence of excessive multiple-access interference due to the case of usage of power domain to multiplex signals, thus the functional implementation of NOMA implies Successive Interference Cancelation (SIC) to combat this interference. Therefore, SIC design becomes the main point in the effectiveness of NOMA systems. On the other hand, hybrid schemes, NOMA/OMA, have been recently proposed to reduce the drawbacks of pure NOMA systems. However, in these schemes, it becomes necessary to distinguish NOMA and OMA users. Cognitive Radio techniques turn to be a good option to effectively separate NOMA/OMA users as well as to distinguish NOMA users. In this chapter, a brief overview of NOMA techniques related to Cognitive Radio technology (CR-NOMA) and SIC design reported in the literature is presented. Also, new findings about NOMA/OMA users’ recognition are described
    corecore